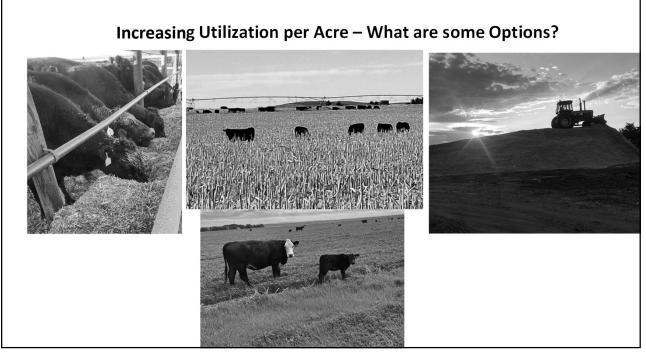
Integrating Crops and Beef Cattle

Karla Wilke, Cow-calf & Stocker Management Specialist

1

Why Consider Crops and Cattle Integration?

Diversification Helps Mitigate Risk


A Way to Add a Profit Center for the Next Generation

More Utilization of the Acres Already Being Taxed or Paid For

Adding grazing lands (perennial pasture) is not always feasible. It can be high risk due to drought, land payments, interest, and taxes. Depending on rainfall, land prices, and cattle value, the cattle may not pay the expenses.

3

Be creative Think outside the Box There is no "one right way" to integrate crops and livestock

By using crop residues, by-products, silages, and some annual forage grazing we are able to run 10x the number of mama cows our perennial acres would support in a traditional setting, labor is actually our rate limiting step

Possible Semi-Confinement Systems Spring-Born Herd

Birth to 2 months of age – Confinement Lot – TMR

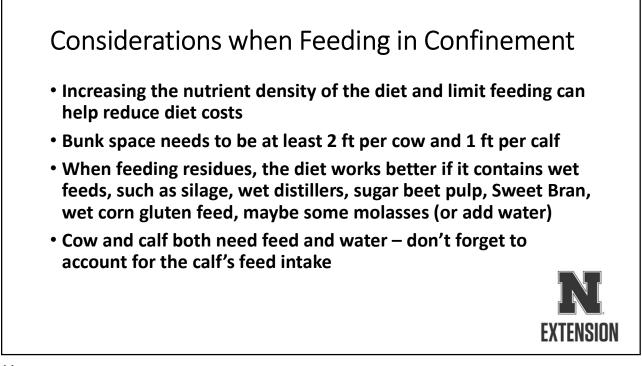
2-4 months of age – annual forages

4-5 months of age – perennial forage/other annual forages

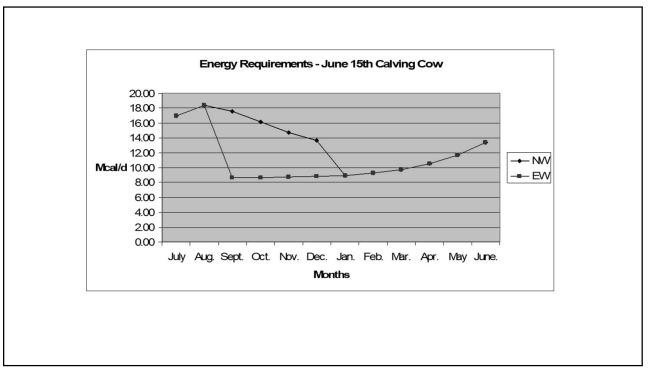
5-6 months of age – confinement – TMR

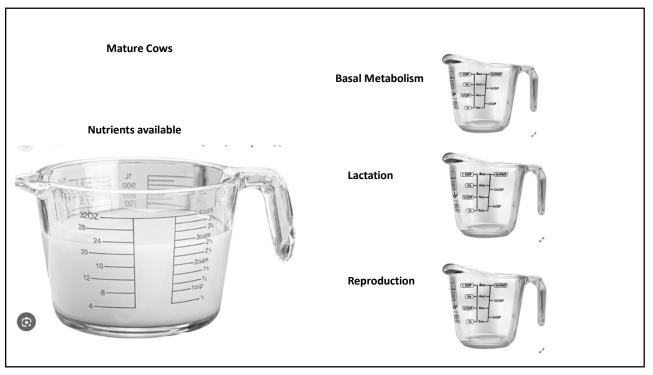
6-9 months of age – confinement weaned calf diet/or annual forages

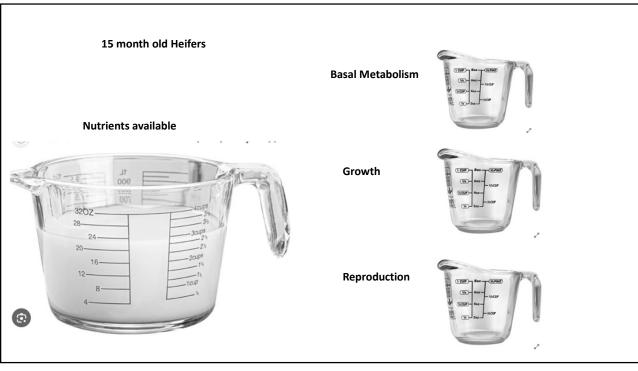
Dry bred cows – cornstalks/annual forages or TMR

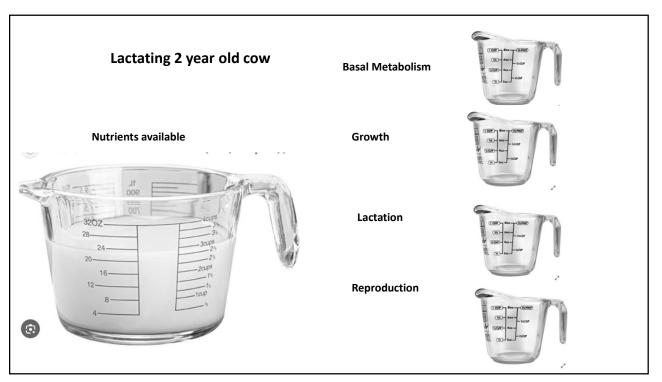

Late pregnancy and start of calving – confinement - TMR

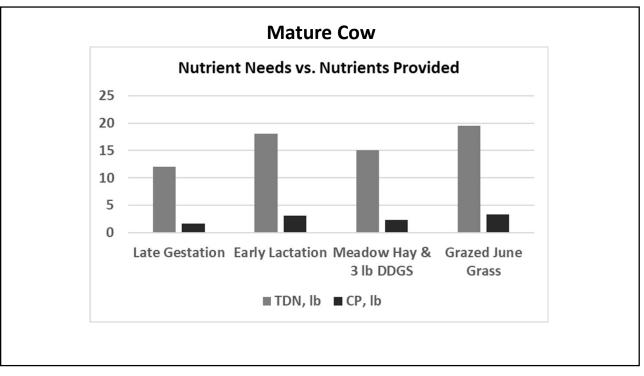
7


Feeding Production Pairs in Confinement – What does it Take?

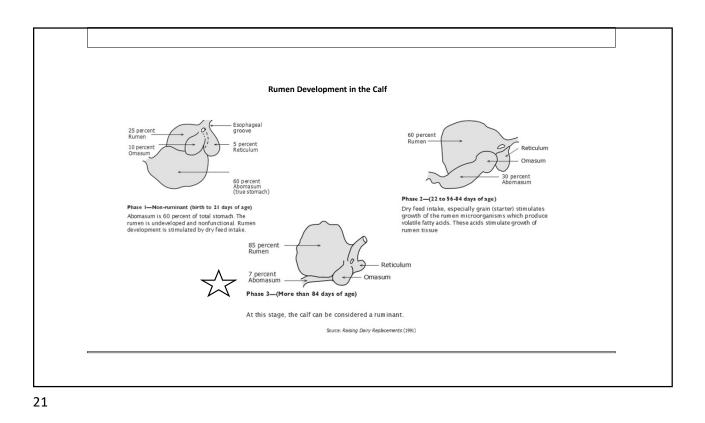


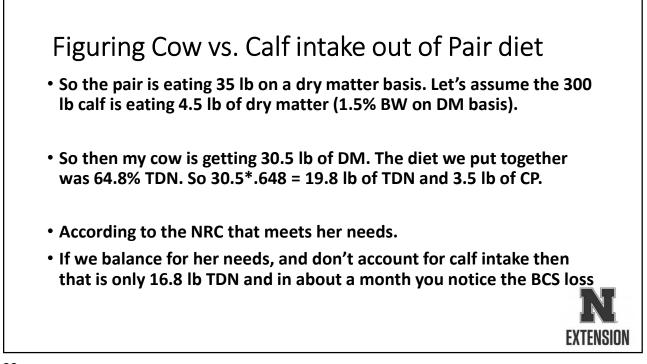











What about feeding the nursing calf?

	Body	Forage	Milk	Forage	Milk
	Weight, Ib	Intake, % BW	Intake, %BW	OM/d	Intake lb OM/d
3 month old calf (90 days)	228	1.1	1.1	2.4	2.5
4 month old calf (120 days)	344	1.2	0.73	4.0	2.5

Lactation Diet for Pairs \$/ day at 78.4 % DM % AS IS lb as is per \$/ton cow lb Ground 37 19.5 15.2 80 0.608 Residue WDGS 22 0.638 17 17 75 **Triticale silage** 29.1 23 40 0.460 22.7 0.575 **Corn Silage** 22.7 29.1 23 50 Mineral 0.6 0.3 0.25 750 .094 Total 78.4 2.38 Yardage 0.30

Fed at 35.23 lb DM the diet provides 22.8 lb of TDN and 4.02 lb of CP. It is 45% DM. 2.3% BW of 1500 lb pair

- Lactation diets need to be very energy dense especially compared to gestation diets
- Wet distillers isn't available to everyone, but is a great source of protein, energy, and phosphorus
- Whatever we replace it with, has to make up those shortages

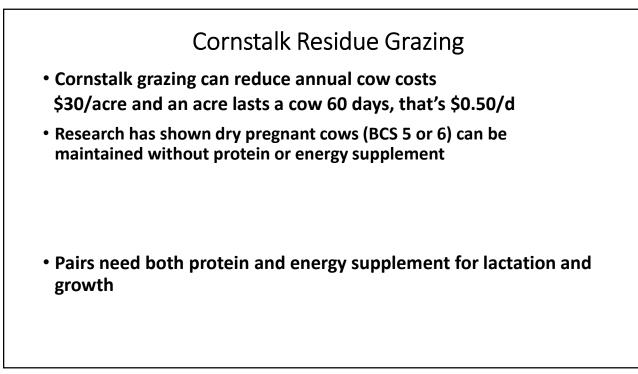
Minerals and Vitamins for Confinement

25

Distillers is high in sulfur which is an antagonist to copper

Confined lactating cows need a healthy dose of magnesium in the mineral

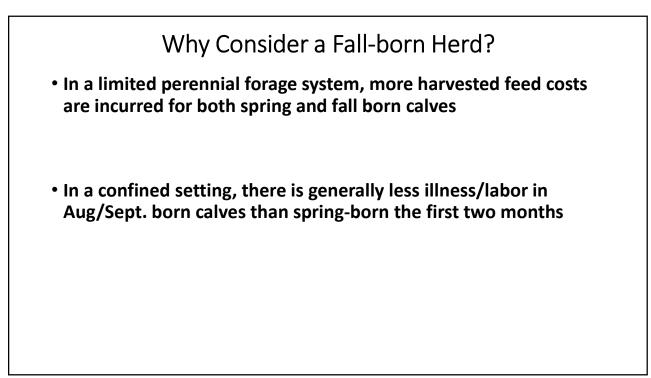
Cows who rarely have the opportunity to graze green grass are likely short on Vitamin A

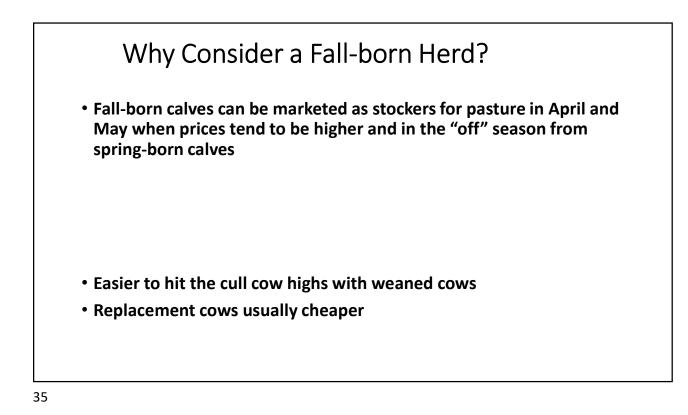

Commercially available mineral packages may not have an appropriate amount or availability of certain minerals or vitamins

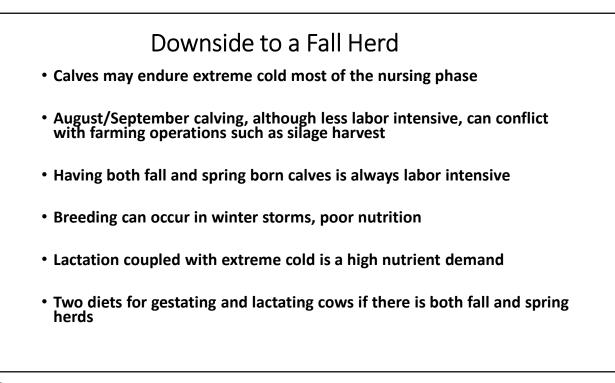
Feeding in the evening can shift around 75% of the calves to be born between 5 am and 5 pm. This is very beneficial for the calf who has a better chance of warming up and drying off, but is a Godsend for the people working off farm jobs or farming as well as calving. Works best with limited or no grazing.

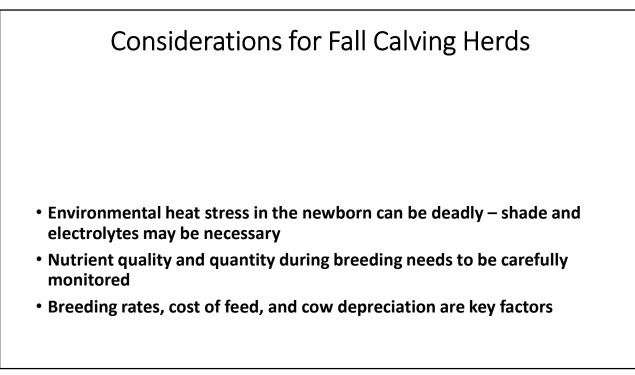
Annual Forages as an Option for Pairs in a Semi-Confinement System

- \$12/ac triticale seed
- \$25/ac water (drought conditions)
- \$12/ac planting costs
- \$5/ac to spread manure
- 110 pair for 35 days
- \$0.91/d/pair


The beauty of silage is quality, moisture, fairly inexpensive, and a lot of tonnage vs. grazing




	Dry matter, lb	As is, lb	\$/ton	\$/d
WDGS	2.5	7	80	0.28
Ground residue	18.0	21	60	0.64
Triticale silage	8.1	23	40	0.46
Mineral	0.23	0.25	750	0.10
Total	28.8	51.26		1.47
With yardage \$.30				1.77


	Gra	zing	Confinement				
\$/d	days		\$/d	days			
1.57	60	Hay/sup calving	2.68	170	Confine lact		
2.00	155	Pasture lease	0.91	40	Graze annuals		
1.18	90	Weaned winter hay	0.50	60	Graze stalks		
1.43	60	Pre calving	1.77	95	Late gest diet		
1.63	365		1.89	365			

So that is an annual feed cost difference of 690.15 – 596.20 or \$93.95/cow/year to run 200 cows instead of 20 Hidden cost of pasture lease is wear and tear on a pick up to go check cows, hauling cows in a semi if trailing is too far Hidden benefit of semi-confinement is reduced time to go check, likelihood of them being out when you have time commitments for off farm income or farming operations

Possible Semi-Confinement Systems Fall-Born Herd (Aug/Sept)

- Calving on Perennial or Annual pasture or turned out of lot as calved
- Oct-Nov. annual forage after silage?
- Dec. to Feb. cornstalks with supplement or TMR
- March possible weaning grow ration until May
- Dry cows on winter range or TMR
- May August TMR or annual forages or perennial pasture

What about Calf Health?

Clean pens Age segregation Good nutrition & vaccinations for cows

Good vaccination program Adequate feed opportunities for calves Shelter out of wind and wet

39

Forage Chains in Integrated Systems Fall planted small grains – spring grazed or harvested as hay or silage Late spring short day corn – silage then back to fall small grain Or Late spring summer annual such as sorghum sudan for grazing or harvest

• Cover crops after grain/silage

Balancing Farm Work and Cattle Work

Spring calving and spring planting Branding and small grain silage harvest Summer farming, daily TMR feeding Fall preconditioning, fall harvest Winter feeding, no vacation Fall calving and fall harvest Winter branding, frozen facilities Spring weaning and spring planting Extra winter chores with caring for young pairs

Spring herd, fall herd, farming, off farm income = no rest for the weary

41

Do you have to develop and calve out heifers?

Think outside the box. What about reducing the labor of calving heifers by buying bred cows or pairs?

43

Currently, cattle prices are high and to step into an unestablished business could be pricey.

Another option could be to take in cattle and get paid for feed and care. Lease options are something else to think about. HAVE A CONTRACT

What about stocker yearlings or finishing cattle?

45

Treatment	Control	Corn	Corn/mol /urea	DDGS	SoyPass/ SBM	SEM	<i>P-</i> value
Initial BW, lb	517	517	517	517	517	3.5	0.10
Ending BW, lb	506 ^a	539 ^b	559°	629 ^d	640 ^d	4.8	0.03
ADG, lb	- 0.18 ^a	0.31 ^b	0.53°	1.32 ^d	1.47 ^d	0.07	0.03
Suppl. DMI, lb/d	-	3.7	3.3	3.1	3.5	-	-
ГDN, %	-	83	78	104	90	-	-
TDN intake lb/d	-	3.1	2.4	3.1	3.1	-	-
RDP balance (g/day)	-144	-253	7.0	-161	-1.0	-	-
MP balance	-110	-36	93	41	257	-	-


EXTENSION

(Gillespie-Lewis et al., 2015)									
	Low Gain (0.5 lb/d)	High gain (1.5 lb/d)	SEM	P-value					
Winter Backgrounding phase (144 days)									
Initial BW, Ib	499	497	11.3	0.28					
Average Daily Gain, lb/d	0.61	1.39	0.09	< 0.01					
Ending BW, lb	585	695	20.7	< 0.01					
Summer Grazing phase (138 days)									
Average Daily Gain, lb/d	1.34	1.06	0.09	0.01					
Ending BW, lb	768	840	16.8	0.02					
Compensation, %	37								
Finishing Phase (115 days)									
Average Daily Gain, lb/d	3.98	4.15	0.24	0.06					
Total Dry matter intake, lb	3252	3201	114.8	0.71					
Feed:gain (efficiency)	7.04	6.83		0.19					
Final BW, lb	1230	1307	21.8	< 0.01					

- Final Body weight was greater after finishing for cattle supplemented for a higher rate of winter gain
- Overall profitability was greater for the calves supplemented for greater winter gain regardless of DDGS pricing (80% of \$3.00/bu corn vs. 110% of \$7.00 bu/corn)

	DM, lb	As is, lb
WDGS	3.85	11
Oat hay	4.68	5.5
Trit silage	4.8	12
mineral	0.14	0.15
Total	13.5	28.7

Diet DM is 47%, provides 9.3 lb TDN and 2.1 lb CP

49

How you choose to integrate livestock into a farming operation is entirely up to you and depends on your resources. Cows or yearling, one is not easier than the other, they just have different challenges. One advantage of cows is they are considered an asset that depreciates for tax purposes

Using equipment for both farming and cattle production can spread out costs and depreciation

51

Using bulls for both spring and fall herds spreads costs of bulls over two herds, makes bull management easier

Years of Study ¹	Cropping System ²	Сгор	Grazed Yield	Ungrazed Yield	SEM	P value
93-95	Irrigated Corn-Soybean ³ Rotation	Soybeans	54.6667	55	3.3747	0.7418
93-95	Dryland Strip Cropping ⁴	Soybeans	39.3333	42.6667	17.5431	0.8289
93-95	Dryland Strip Cropping ⁴	Grain Sorghum	106.33	107	17.5431	0.8289
93-95	Dryland Strip Cropping ⁴	Corn	184.67	174.67	17.5431	0.8289
93-95	Irrigated Continuous Corn ⁵	Corn	185.33	181.67	27.3272	0.5766
96-11	Fall Grazed Corn-Soybean ⁶	Soybeans	62.4	60.4	2.1056	0.001
96-11	Fall Grazed Corn-Soybean ⁶	Corn	208.9	205.8	7.8359	0.1808
96-11	Spring Grazed Corn- Soybean ⁶	Soybeans	61.7	60.4	2.0156	0.001
96-11	Spring Grazed Corn- Soybean ⁶	Corn	207.2	205.8	7.8359	0.1808
	and ending year that the stud					
² Type of	cropping system that the field	l was manage	d in.			
³ Center	pivot irrigation, corn residue g	razed and soy	bean yield	s reflect impa	act of grazi	ing on
yields.				-		

⁴ This field was in a strip cropping study in a rotation where residue from all crops was grazed. Corn followed soybeans, grain sorghum followed corn, and soybeans followed grain sorghum. ⁵ Was maintained in a continuous corn system.

⁶ Fields are from linear move irrigation field and maintained in corn followed by soybean rotation for 14 years.

Impact of Spring Corn Residue Grazing on Soil Physical Properties and Crop Yield

Table 1. Percentage of residue cover and surface roughness present after corn residue was not grazed (NG), grazed in the spring at a normal stocking density (NSD) or spring grazed using a high stocking density (HSD).

					NG vs	NSD vs
	NG	NSD	HSD	SEM	NSD	HSD
Residue cover ^{1,} %	87.9	37.7	17.7	2.8	< 0.01	< 0.01
Surface roughness ^{2,} %	1.6	9.5	14.9	0.78	< 0.01	< 0.01

1 Residue cover measured in year 2, 21-days post removal of calves.

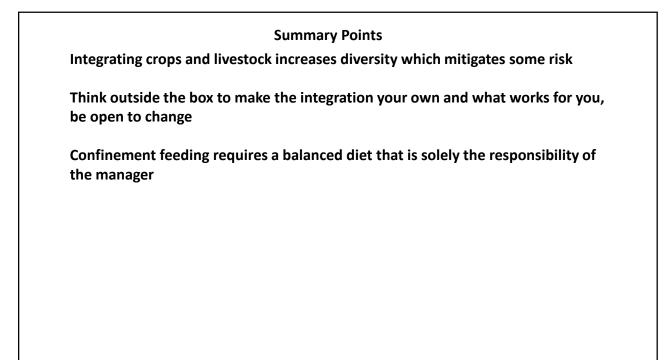
² Surface roughness was measured using a 20-foot-long chain which decreased in length with increased surface roughness. It is expressed as the percent change in chain length.

Grabau et al. 2022 NE Beef Report

					P-1	value
Item	NG	NSD	HSD	SEM	NG vs NSD	NSD vs HSD
Bulk density, g/cm ³						
21 days						
0-2 in	0.85	1.02	0.99	0.041	< 0.01	0.45
2-4 in	1.16	1.25	1.25	0.028	< 0.01	0.92
49 days						
0-2 in	0.88	1.01	1.02	0.036	< 0.01	0.80
2-4 in	1.18	1.27	1.27	0.016	< 0.01	0.86
Penetration resistance, MPa	i					
21 days						
0-2 in	0.50	1.53	1.64	0.12	< 0.01	0.29
2-4 in	0.71	1.36	1.58	0.07	< 0.01	0.02
49 days						
0-2 in	0.52	1.67	1.76	0.11	< 0.01	0.37
2-4 in	0.73	1.45	1.64	0.12	< 0.01	0.08
Moisture content, %						
21 days						
0-2 in	23.8	19.7	17.1	0.89	< 0.01	< 0.01
2-4 in	23.0	22.2	22.0	0.59	0.35	0.81
49 days						
0-2 in	25.2	19.5	18.0	0.86	< 0.01	0.20
2-4 in	24.1	22.0	21.9	0.37	< 0.01	0.78

Table 3. Soybean emergence and yield when planted after corn residue was either not grazed (NG), grazed in early spring prior to soybean planting¹ at a normal stocking density (NSD) with 3 steers/acre for 45 days or at a high stocking density (HSD) with 9 calves/acre for 15 days.

Item	NG	NSD	HSD	SEM	NG vs NSD	NSD vs HSD
Emergence ² , plants/ac	102,311	107,340	109,267	3,754	0.34	0.70
Soybean yield, bu/ac	72.9	75.7	77.4	0.61	< 0.01	0.06


¹ Cattle were pulled off treatments at the end of March and soybeans were planted approximately 30 days later.

²Emergence counts were taken 30 days post-planting.

Conclusion

When stocking at the recommended rate, stocking density does not have major impacts on soil physical properties and subsequent crop yield. The results indicate that, regardless of stocking density, grazing corn residue in the spring may cause minor compaction; however, it is below the threshold to reduce the subsequent soybean yield. This study was conducted to create a worst-case scenario (grazing in muddy conditions) and yet there was still soybean

yield improvement with grazing. Thus, producers should not be concerned about grazing cattle on residue in the spring causing compaction. However, winter grazing would still be considered ideal as there is less surface roughness to contend with at planting and less trampling loss of residue.

Thank you! kjenkins2@unl.edu