

95% found their results reliable and trustworthy

75% put their results into practice

\$31 – avg per acre profit increase by putting results into practice

Thompson, L., K. Glewen, R. Elmore, J. Rees, S. Pokal, D. Hitt. (2019). Farmers as Researchers: Indepth Interviews to Discern Participant Motivation and Impact. Agron. J. 111(4):1-11.

Biological N Fixation

- Soybeans are associated with symbiotic N-fixing bacteria
- Non-symbiotic, N-fixing organisms "fix" N from the atmosphere
- Temperature and moisture dependent (moist soil and warm temperatures produce greater activity)
- Goal is fixing N from atmosphere and making it available to the plant
- Promote opportunity to reduce synthetic N fertilizer

PART 1 ACTIVITY: (15 min)

- 1. Browse the table of contents and find a reports that is of interest to you. **Read** the report and **answer** the questions in PART 1 (5 min)
- 2. Pair & share. Find a partner and tell each other about the report you picked. (5 min)
- 3. Group share. (5 min)

Real Systems 1. Farmers implement the trials and collect the data using their own equipment 2. Protocols fit each farmer (growing conditions/soils, etc.) and address each farmer's specific interest and questions

IDENTIFYING THE QUESTION

Does starter fertilizer increase corn yield?

- 1. Starter fertilizer at planting 5 gal/ac 10-34-0
- 2. Check (no starter fertilizer)

Which starter fertilizer results in greater corn yield?

- 1. 5 gal/ac 10-34-0 starter fertilizer
- 2. 5 gal/ac Conklin Feast
- 3. 5 gal/ac Triple Nickel

33

Splitting the field in half doesn't help us best answer our question. We need a different design.

	Paired Comparison Desig										sigr				
	Pair 1 Pai				r 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7										
Т	Trt Trt A B		Trt A		Т	Trt B		Trt A		Trt B		Trt A		Trt B	
Ľ															
															L
						Ra	ndo	miz	ed (Com	plet	te B	lock	De	sign
	Block 1			Block 2				Block 3			Block 4				
The	Tre	Tre	Tre	Tre	Tre	The	Tre	Tre	Tre	Tre	Tre	Tre	Tre	Tre	ਪੀਟਿ
	atim	atm	atm	atm	atm	mpe	atm	atm	mper	atm	atm	atm	atim	atm	mpe
ent.	ent	ent	ent	ent	ent	ent.	ent	ent	ent.	ent	ent	ent	ent	ent	ent.
\mathbb{A}	Ξ	0	Ø	C	D			D	\mathbb{A}	C	Ū	0		Ð	

As-applied Data

Utilize the technologies farmers have:

- GPS logging of "as-applied" data
 - Record location, time, and products
 - Planting, chemical
 applications, fertilizers

Analysis Analyze Yield Response to Treatments

- GIS systems (Ag Leader SMS and others) gives us the ability to analyze the data
- Benefit of working with OFR!
 - Easily conduct study & we do analysis

Utilizing Prescriptions SeedingRat 80 110 120 **Design trials** Trials are put in Yield data is that fit each using a prescription collected on-thefarmers' unique and on-the-go using go with yield situation variable rate tech monitors

- 1. What is the optimum nitrogen rate in lower and higher elevation portions of the field?
- 2. Would a variable rate nitrogen strategy by advantageous in this field?

PART 2 ACTIVITY: (15 min)

- Pair up or on your own work through **Part 2** of the handout. (10 min)
- 2. Group share. (5 min)

Laura Thompson

laura.thompson@unl.edu Twitter: @AgTechLaura 402-245-2224

Taylor Lexow

tlexow2@unl.edu 402-245-2222

Aaron Nygren

anygren2@unl.edu Twitter: @CropsANdWater 402-624-8030

onfarmresearch.unl.edu

